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Abstract. We study the ground-state correlations in a charged Bose quantum wire within the
self-consistent-field approximation of Singwi, Tosi, Land, and Sjölander. A simple cylindrical
model for the quantum wire is used. Static properties (structure factor, pair correlation function,
and screened interaction potential), elementary excitation spectra, and ground-state energies are
calculated at different boson number densities and wire radii. Our study shows that, in addition to
the density of bosons, the wire radius provides an extra control on the strength of the many-body
correlations. The correlation effects are found to become increasingly important with decreasing
wire radius at a fixed density, and vice versa. The results obtained using the lower-order random-
phase approximation are also given. We have compared our results for the screened potential
with those for the semiconductor electron quantum wire. It is found that the screened potential for
charged bosons is more attractive than that for electrons forrs < 8, while the two potentials become
essentially the same forrs > 8. Therefore, we conclude that the exchange effects associated with
the electron statistics act to oppose the overscreening properties of the charged Bose system and
are dominated by the Coulomb correlation effects at low carrier densities corresponding tors > 8.

1. Introduction

The study of a system of charged point-like bosons embedded in a uniform neutralizing
background has attracted considerable interest in the recent years. This arises mainly from
their importance in exploring the role of particle statistics in the many-body correlations and
partly from their recognition as a possible model for understanding the phenomenon of high-
temperature superconductivity [1, 2]. A comparison between the behaviour of charged Bose
and electron fluids is anticipated to yield information about the contributions of exchange and
Coulomb effects to correlations. At present, a reasonable amount of information is available
regarding the ground-state correlations in three-dimensional (3D) [3,4] and two-dimensional
(2D) [4,5] charged Bose systems due to the combined efforts of theoretical studies and quantum
Monte Carlo simulation experiments. The study of correlations has also been extended to the
double- and multi-layer charged Bose systems [6].

Recently, Gold [7] has suggested that the system of charged Bose multiple quantum
wires might be a useful model for understanding superconductivity in the one-dimensional
(1D) structures (organic superconductors [8]). Therefore, presumably, an understanding of
many-body correlations in 1D may have importance in the context of the theory of 1D super-
conductors. These correlations have been extensively studied in the 1D electron systems (the
so-called electron quantum wires) both theoretically [9] and experimentally [10]. However,
similar studies are lacking for 1D charged Bose systems. Experimental study of the charged
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Bose system (not only in 1D, but also in the higher dimensions) has not yet been possible
because these systems, unlike their electron counterparts, have not so far been realized in the
laboratory. Theoretically, Gold [7] has presented some preliminary results for the elementary
excitation spectrum of the charged Bose multiple-quantum-wire system on the basis of the
random-phase approximation (RPA). However, the RPA completely neglects the short-range
correlations between the charged bosons which are in fact known to become even more
important in reduced dimensions. Thus, these effects, when taken into consideration, are
expected to modify the excitation spectrum. In the present work, we investigate the many-
body correlations in an isolated charged Bose quantum wire beyond the RPA. A simple
cylindrical model proposed by Gold and Ghazali [11] is used, where an analytical expression
for the Coulomb interaction potential between bosons has been developed in the Fourier space.
Correlations beyond the RPA are described within the self-consistent-field approximation of
Singwi, Tosi, Land, and Sjöander (STLS) [12]. The STLS theory includes correlations in
the form of a static local field correction to the bare interaction between bosons, and the
correction factor is to be obtained numerically in a self-consistent way. It is worthwhile to
mention here that the STLS theory was originally developed for the electron gas system, and
has been applied in the study of ground-state behaviour of charged Bose systems in 3D [13]
and 2D [5]. On including the local field correction, the excitation spectrum can be calculated
at different boson number densities. We also present results for the static structure factor,
pair correlation function, static screened potential, and ground-state energy. In the cylindrical
wire model, the wire radius appears directly in the Coulomb interaction potential, and is
therefore expected to influence the contribution of many-body correlations. Motivated by the
above considerations, we have investigated in a systematic way the correlations at different
wire radii. The screened potential is discussed in comparison with the results for electron
quantum wires. The comparison may be helpful for disentangling the exchange and Coulomb
contributions to the correlations.

The paper is organized as follows. In section 2, we describe the quantum wire model and
the theoretical formalism. Results and a discussion are given in section 3. A summary and the
conclusions are presented in section 4.

2. Wire model and theory

2.1. Wire model

We consider a system of charged point-like particles of chargee each obeying the Bose–
Einstein statistics and confined to moving freely along one spatial direction (say, thex-axis),
while their motion is restricted to being along the two transverse directions. The model is a
direct Bose analogue of the quasi-one-dimensional (Q1D) electron system. The Q1D electron
system realized in the laboratory has been modelled theoretically using different geometrical
constraints. However, the qualitative behaviour of correlations is found to be more or less the
same irrespective of the wire geometry. We use in the present work the cylindrical quantum wire
model developed in the context of an electron system by Gold and Ghazali [11]. In this model,
the Q1D structure is a circular cylinder of radiusR0 with an infinite potential barrier atr = R0.
The motion of the carriers is free along the cylinder axis, while it is restricted perpendicular
to the cylinder. At absolute zero temperature, the bosons are assumed to be present in the
condensate state. This assumption results in a simplification of the problem as compared to
the corresponding one for the electron wire where the electrons can occupy the higher-energy
subbands in the transverse direction. The wire system is assumed to be embedded in a uniform
neutralizing background. For the Coulomb interaction potential between bosons, we use the
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analytical result developed by Gold and Ghazali. The potential is given as

V (q) = e2

2ε0
f (q) (1)

where

f (q) = 144

(qR0)2

[
1

10
− 2

3(qR0)2
+

32

3(qR0)4
− 64

I3(qR0)K3(qR0)

(qR0)4

]
. (2)

In(x) andKn(x) are the modified Bessel functions of ordern. ε0 is the dielectric constant of the
background, and we will useε0 = 1. In the long-wavelength limit,V (q) exhibits logarithmic
divergence, i.e.,V (q) ≈ ln(qR0) asq approaches zero, and this behaviour is also found in the
other Q1D models.

2.2. Theory

The dielectric formulation offers a simple and compact way of describing the physical
behaviour of the many-body charged systems. The density response functionχ(q, ω), which
represents the density response of the system to an external electric potential of wave vectorq

and frequencyω, is a quantity of central importance, as it contains all of the relevant inform-
ation about the system.q is the 1D wave vector along the cylinder axis. An exact calculation
of χ(q, ω) is not practically feasible, as it amounts to solving the complicated many-body
problem. Within the mean-field approximation,χ(q, ω) is given by

χ(q, ω) = χ0(q, ω)

1− V (q)[1−G(q)]χ0(q, ω)
. (3)

χ0(q, ω) is the response function for the noninteracting charged Bose system, and at absolute
zero temperature it is given by

χ0(q, ω) = 2nεq
ω2 − ε2

q

(4)

where εq = (h̄q)2/(2m) is the free-particle energy, andn denotes the linear density of
bosons. It may be noted thatχ0(q, ω) has the same analytical expression independently
of the dimensionality.G(q) appearing in equation (3) is the local field correction arising due
to short-range correlations between the charged bosons. We employ the theory of Singwiet al
(STLS) for calculatingG(q), and it is given by

G(q) = −1

n

∫ ∞
−∞

dq ′

2π

q ′V (q ′)
qV (q)

[S(q − q ′)− 1]. (5)

S(q) is the static structure factor which is related to the imaginary part,χ ′′(q, ω), of χ(q, ω)
through the fluctuation-dissipation theorem as follows:

S(q) = − h̄

πn

∫ ∞
0

dω χ ′′(q, ω). (6)

Theω-integration can be performed analytically to giveS(q) as

S(q) =
[
1 +

2nV (q)(1−G(q))
εq

]1/2

. (7)

From equations (5) and (7), it is apparent thatG(q) can be obtained numerically in a self-
consistent way. From the calculation ofG(q), and henceχ(q, ω), we deduce in the next
section various static and dynamic properties of the system.
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3. Results and discussion

For the numerical calculations and the results presented (unless stated otherwise) we choose
a system of units in which ¯h = 1 and the lengths and energies are expressed, respectively,
in units of the Bohr atomic radius (a0) and the rydberg (1 Ryd= e2/(2a0)). The density of
bosons is described by a dimensionless parameterrs : rs = 1/(2na0).

3.1. Static correlation functions

Expressed in dimensionless units,S(q) andG(q) become

S(q) =
[
1 +

f (q)

rsq2
(1−G(q))

]−1/2

(8)

G(q) = − rs

πqf (q)

∫ ∞
0

dq ′ [S(q ′)− 1][(q + q ′)f (q + q ′) + (q − q ′)f (q − q ′)]. (9)

Equations (8) and (9) are solved numerically in a self-consistent way by taking the RPA
(G(q) = 0) structure factor as the initial guess for calculatingS(q) andG(q). A self-consistent
solution is obtained within a tolerance of 0.01% in about 10–20 iterations, depending upon
the value ofrs and the wire radiusR0. The results for the self-consistent structure factorS(q)

and local field correctionG(q) are plotted in figures 1 and 2 forrs = 1, 3, 5, 8 andR0 = 2.
The behaviour ofG(q) implies an increase in the local field correction due to many-body
correlations with increasingrs , i.e. decreasing density of bosons. We find a similar qualitative
behaviour ofG(q) with decreasing wire radiusR0 at a fixed densityrs . This result will be
illustrated more transparently in the real space while discussing the pair correlation function
and the screened potential. We find the following limiting behaviours ofS(q) andG(q):

lim
q→0

S(q) ≈ 2q
√

rs

|ln(qR0/2)| (10)

Figure 1. The static structure factorS(q) versusq for
rs = 1, 3, 5, 8 andR0 = 2. The curves from bottom to
top representS(q) in increasing order ofrs .

Figure 2. The local field correctionG(q) versusq for
rs = 1, 3, 5, 8 andR0 = 2. The curves from bottom to
top representG(q) in increasing order ofrs .
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and

lim
q→0

G(q) ≈ − rsγ

π ln(qR0/2)

[
1− 1

8
(qR0)

2

]
(11)

lim
q→∞G(q) ≈ 1− g(0) (12)

where

γ = −1

2

∫ ∞
0

dq f (q)[S(q)− 1] (13)

is a positive-definite quantity andg(0) is the value of the pair correlation function at zero
separation. The large-q result is identical with that obtained for the 2D and 3D systems, while
the small-q behaviour is different and depends strongly on the wire size. Relation (11) shows
that the effect of increasingrs can be achieved equivalently by decreasing the value ofR0. We
find numerically that this is true for all values ofq. A similar behaviour ofG(q) holds for the
electron quantum wire [14]. This result could be of use in fabricating the strongly correlated
electron system in semiconductor heterojunctions even at moderately high electron densities
by adjusting the width of the confining potential.

The pair correlation functiong(x) can be obtained fromS(q) by taking its inverse Fourier
transform as follows:

g(x) = 1 +
2rs
π

∫ ∞
0

dq cos(qx)[S(q)− 1]. (14)

S(q) calculated self-consistently is used in the above equation to calculateg(x), and the results
thus obtained are plotted in figure 3(a) as solid curves for differentrs at a fixed wire radius
R0 = 2. The dashed curves in figure 3(a) representg(x) in the RPA forrs = 1 and 3. In
the RPA,g(x) is found to become negative at small separation forrs > 2. It is the inclusion
of short-range correlations in the form of a local field correction that repairs this unphysical
behaviour ofg(x), andg(x) in STLS theory becomes only slightly negative forrs > 8. Now,

(a) (b)

Figure 3. The pair correlation functiong(x) versusx for (a)rs = 1, 3, 5, 8 andR0 = 2; the curves
in the order of decreasingg(0) representg(x) in increasing order ofrs , and (b)R0 = 1, 3, 5 and
rs = 3; the curves in the order of decreasingg(0) representg(x) in decreasing order ofR0. x is in
units of(π/(4rsa0))

−1. The solid curves are the results from STLS theory, and the dashed curves
represent the RPA results.
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we studyg(x) as a function of the wire radius, keepingrs fixed. In figure 3(b),g(x) is shown
for R0 = 1, 3, 5 andrs = 3 along with the RPA result (dashed curve) forR0 = 1. Making a
comparison between the results forg(x) in figures 3(a) and 3(b), we find that, in addition to
the density of bosons, the wire width provides an extra control on the strength of the many-
body correlations. For a fixed density, the correlations are found to grow in magnitude with
decreasing wire radius and vice versa. The importance of correlations with decreasingR0 is
also apparent in the behaviour ofg(x) in the RPA. For example, the RPA estimate ofg(0)
decreases from−0.332 (R0 = 2) to−0.686 (R0 = 1) atrs = 3 (figure 3).

3.2. Static screened potential

The static screened interaction potentialVsc(q) is defined by

Vsc(q) = V (q)

ε(q, ω = 0)
(15)

whereε(q, ω = 0) is the static dielectric response function, which in STLS theory is given by

1

ε(q, ω = 0)
= 1 +V (q)χ(q, ω = 0). (16)

In real space the screened Coulomb interaction potentialVsc(x) is given by inverse Fourier
transformation as

Vsc(x) = 1

π

∫ ∞
0

dq cos(qx)Vsc(q). (17)

In figure 4(a) we show the screened potentialVsc(x) versus distancex for rs = 1, 3, 5, 8 and
R0 = 2 along with the RPA results (dashed curves) forrs = 1 and 5. The dash–dot curve
is for the unscreened Coulomb potential forrs = 1 andR0 = 2. It must be pointed out
here that the interaction potentialV (q) has been calculated by averaging over the Schrödinger

(a) (b)

Figure 4. The static screened potentialVsc(x)versusx for the Bose system for (a)rs = 1, 3, 5, 8 and
R0 = 2; the curves from top to bottom representVsc(x) in increasing order ofrs , and (b)R0 = 1, 3, 5
andrs = 3; the curves from top to bottom representVsc(x) in decreasing order ofR0. The solid
curves are the results from STLS theory and the dashed and dash–dot curves represent, respectively,
the RPA results and the unscreened potential.
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wave functions corresponding to the geometry of the cylinder. Thus,x represents the parallel
separation between two particles. The finiteV (x) atx = 0 is due to averaging effects. From
figure 4(a), we find thatVsc(x) exhibits an attractive region, and its depth is strongly enhanced
over the RPA value by the many-body correlations. Also, the many-body enhancement of
the attraction increases with the decrease in density. The comparison with the RPA curves
shows thatVsc(x) is already negative in the RPA. We also check that the attraction continues to
appear inVsc(x) even in the high-density limit, i.e., forrs � 1. This behaviour of the charged
Bose fluid is well known in higher dimensions and is called overscreening. We may conclude
from the comparison that the correlations between bosons further enhance the overscreening
properties. In order to illustrate the dependence of the correlations on the wire radius,Vsc(x)

is plotted in figure 4(b) for different wire radii (R0 = 1, 3, 5) and a fixed density (rs = 3).
Clearly, the correlations build in strength with decreasingR0. The correlations atrs = 8 and
R0 = 2 seem approximately identical with those atrs = 3 andR0 = 1.

It is interesting to compare our results for the screened potential with the electron quantum
wire system. The comparison is presented in figure 5 forrs = 1, 3, 8 andR0 = 2. The
solid and dashed curves represent, respectively, the results for the charged Bose and electron
wires. Vsc(x) for the electron system is qualitatively the same as for the Bose case except
for the presence of oscillatory behaviour in the former at larger. These oscillations (Friedel
oscillations) are present due to the singular behaviour of the 1D Lindhard function atq = 2qF ,
qF being the Fermi wave vector. The difference in results forVsc(x) is certainly due to the
different statistics obeyed by the particles in the two systems. Atrs = 1,Vsc(x) for the Fermi
case is negligibly attractive as compared to that for the Bose case, and the two curves differ
considerably. With increasingrs , however, the difference in results becomes smaller, and for
rs > 8, the potentialsVsc(x) are hardly distinguishable for the two systems. Thus, we may
conclude from the comparative study that the exchange effects make the dominant contribution
to the many-body correlations in the high-density regime, and that the Coulomb effects grow
with decreasing density and eventually dominate over exchange effects in the low-density
regime. A similar relative importance of exchange and Coulomb correlations as a function
of rs is also seen in the behaviour ofg(x). Furthermore, the above comparison suggests that
the exchange effects associated with the Fermi statistics oppose the overscreening nature of

Figure 5. The static screened potentialVsc(x) versusx for rs = 1, 3, 8 andR0 = 2; the solid and
the dashed curves represent, respectivelyVsc(x) for the Bose and the Fermi cases.
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the Bose statistics. However, the Coulomb correlations grow more quickly than the exchange
effects with increasingrs , and consequently one expects overscreening effects in the electron
gas as well, but at sufficiently largers . Calmels and Gold [14] have also recently anticipated the
presence of overscreening effects in the electron wire at largers . Our study, however, provides
a clear quantitative basis for the anti-overscreening nature of exchange effects at smallrs and
for the dominance of Coulomb correlations, and, hence, overscreening at highrs .

3.3. The elementary excitation spectrum

The spectrum of elementary excitations is obtained from the poles of the density response
function, i.e.,

1− V (q)[1−G(q)]χ0(q, ωp(q)) = 0. (18)

Solving equation (18), we obtainE(q) (= h̄ωp(q)) as

E(q) =
[
q4 +

q2f (q)

rs
(1−G(q))

]1/2

. (19)

In the long-wavelength limit,E(q) is given approximately by

E(q) ≈ 2q√
rs
|ln(qR0/2)|1/2

[
1 +

rsγ

2π ln(qR0/2)

]
(20)

and in the large-q limit, E(q) asymptotically approaches the free-particle energy.E(q) rep-
resents the energy of the collective excitation of bosons (plasmons) along the length of the
cylinder. Figures 6(a) and 6(b) show, respectively, the results forE(q) for rs = 1, 3, 5, 8;
R0 = 2 andR0 = 1, 3, 5; rs = 3. The results obtained using the RPA are also plotted for
comparison, as dashed curves. Again we notice that the difference in results from STLS theory
and the RPA is maximum for low densities and smaller wire radii, where correlations play a
more important role.

(a) (b)

Figure 6. The excitation energyE(q) versusq for (a) rs = 1, 3, 5, 8 andR0 = 2; the curves from
top to bottom representE(q) in increasing order ofrs , and (b)R0 = 1, 3, 5 andrs = 3; the curves
from top to bottom representE(q) in decreasing order ofR0. The solid curves are the results from
STLS theory and the dashed curves represent the RPA results.
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3.4. Ground-state energy

The ground-state energyEgs is simply equal to the boson interaction energy (Eint ), as the
kinetic energy contribution is zero in the condensate phase.Eint is determined by using the
ground-state energy theorem as

Eint =
∫ e2

0
dλ

Eint (λ)

λ
(21)

whereλ measures the strength of the interaction potential andEint (λ) is given by

Eint (e
2) = n

2N

∑
q

V (q)[S(q)− 1]. (22)

From equations (21) and (22),Egs (in rydbergs) is obtained as

Egs = 1

2πrs

∫ rs

0
dr ′s

∫ ∞
0

dq f (q)[S(q; r ′s)− 1]. (23)

Equation (23) is solved numerically to calculateEgs and the results are given in table 1 as
a function ofrs for R0 = 2, along with the RPA values. Correlation effects are clearly
overestimated in the RPA.

Table 1. The ground-state energy (−Egs in rydbergs) as a function ofrs for R0 = 2.

rs 1 2 3 5 8

STLS 0.3496 0.3113 0.2850 0.2465 0.2059
RPA 0.3612 0.3328 0.3156 0.2934 0.2717

4. Summary and conclusions

We have studied the ground-state correlations in a charged Bose quantum wire beyond the
random-phase approximation by including the correction due to many-body correlations.
Correlation effects are described within the self-consistent-field approximation of Singwi, Tosi,
Land, and Sj̈olander. Static pair correlation functions, static screened interaction potentials,
elementary excitation spectra, and ground-state energies are calculated, and their dependence
on the boson number density and the wire radius is examined. The comparison with the RPA
shows that the correlations beyond the RPA become increasingly important with (i) decreasing
density of bosons and (ii) decreasing wire radius. We have also presented a comparison
between the results for charged Bose and electron wires in terms of the static screened potential.
The comparison makes it clear that the exchange effects of Fermi statistics work against the
overscreening property of the charged Bose system, while the Coulomb correlations support the
overscreening. Overscreening enhanced by many-body correlations may provide a mechanism
for the formation of bound pairs of electrons (local pairing [2]). If this happens, the paired-
electron system constitutes a system of charged bosons with a density about half that for the
unpaired-electron system. Consequently, one should expect the formation of bound pairs of
bosons due to overscreening. This seems possible as long as the charged bosons are point-like
particles. However, the bound pairs of electrons have a finite size, and we believe that their
screening behaviour will be different from that of point-like charged bosons—because, if this
is not true, the system of point-like charged bosons will become unstable against local pairing.
Therefore, it will be important to study the ground-state correlations considering the finite size
of the bosons. Furthermore, it is hoped that our study will stimulate work on the problem—in
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particular, the computer simulation of the ground-state properties of quasi-one-dimensional
systems of charged bosons and electrons.
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